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Abstract. The effect of field or temperature changes on spin correlations is calculated for 
the finite-range Ising spin glass in the Gaussian approximation. Correlation overlaps are 

( A H ) - ‘ ’ 2 H - ’ ’ 6  near Tc,  when the field is changed from 0 to H and from H to H + A H ,  
respectively, but fall off like a power for any temperature change below T, in zero field. 

found to decay exponentially, with characteristic lengths tH - H-2’3  and taH- 

Typical spin-glass effects such as remanence, hysteresis, history dependence, long 
relaxation, etc, are usually interpreted, mostly in a qualitative manner, in terms of a 
complicated free-energy landscape whose features are sensitive to small variations of 
the external parameters like the temperature T or the magnetic field H. A recently 
introduced phenomenological scaling theory (Fisher and Huse 1986, 1988, Bray and 
Moore 1987a) has given a more concrete formulation to the ideas about this sensitivity 
and has led to the recognition of what has been termed (Bray and Moore 1987b) the 
chaotic nature of the spin-glass state. Chaos in this context means that the frozen 
random pattern characterising the spin glass will be completely reorganised by any 
change of T or H, so, for example, the overlap of local magnetisations between two 
systems, one in a field H, the other in zero field, is 

4 H  = ( S I ) H ( ~ ~ ) O = ~  (1) 

4 A T  = ( S I ) T ( S J T + A T  = 0 ( 2 )  

or between systems at temperature T, respectively T + A T, is 

for any small H or AT ((. , .) means thermal average; the bar means average over the 
random couplings). Another aspect of chaos is that the correlation functions 

CH(r) =(Sis,)H(SrS,)O (3) 

C * T ( V )  = ( s lS , )T(SIS , )T+AT (4) 

fall off to zero at long distances r = Ir, - rJI + 00 with finite characteristic lengths tH, 
respectively tar, that diverge for H+O,  A T + O .  On scales exceeding these lengths 
the structures in the H, 0, respectively T, T + AT, ensembles completely decorrelate. 
This sensitivity of the spin-glass order to small changes in the control parameters is 
in marked contrast to the behaviour of conventional ordered systems. 

The phenomenological scaling theory also implies that at the spin-glass transition 
the phase space splits only to two ‘valleys’, related by an overall reflection (Fisher and 
Huse 1987, Bray and Moore 1987a). This is clearly in conflict with the intricate phase 
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space structure envisaged by Parisi's mean-field theory (see MCzard er a1 (1987) for a 
detailed exposition). In some respect, however, there may be considerable overlap 
between these two theories, e.g. both predict a massless phase, infinite spin-glass 
susceptibility and power-law-like correlations throughout the spin-glass region (Fisher 
and Huse (1986), Bray and Moore (1987a) on the one hand, and Sompolinsky and 
Zippelius (1983), Goltsev (1984a), Kondor and De Dominicis (1986) on the other), 
and it is evidently important to clarify their relationship as fully as possible. The 
problem of chaos is one of the possible points of contact. 

In fact, (1) and ( 2 )  can be easily derived also within the framework of mean-field 
theory: (1) is implied by a result in Parisi (1983), while (2) is quoted by Binder and 
Young (1986) from an unpublished work by Sompolinsky. The purpose of the present 
letter is to look into the other aspect of chaos and calculate the correlation functions 
(3), (4) in a Gaussian approximation around mean-field theory. To this end we consider 
a standard Edwards-Anderson (1975) model for Ising spins with a finite-range interac- 
tion and assume that the dimension d of the system is high enough (presumably it 
must be higher than 6, see Temesvhri er a1 (1988) for a recent discussion of the problem) 
so that the phase space structure is similar to that in mean-field theory (many valleys 
with a hierarchical organisation). The main result we find under this assumption is 
that the Gaussian approximation to the correlation function (3) is, indeed, short ranged 
in the entire spin-glass region, with a characteristic length &, - H-2'3 near T, but, 
contrary to expectations, the overlap (4) between the spin correlations at two different 
temperatures, T and T', is infinitely long ranged for any AT = T ' -  T, as long as both 
T and T' are below T,. In other words, we find 'less chaos' with respect to temperature 
changes than to changes in the field. 

In the following we give some details of the calculation of the magnetic overlaps: 
the case of different temperatures requires only minor modifications. To calculate 
quantities like (1) or (3) one can use a slightly modified version of the standard replica 
trick (Edwards and Anderson 1975): the first m replicas will be considered to be in 
zero field, the remaining n - m ones in field H ;  in the replica limit both n and m go 
to zero. 

in (1) is determined by the (stable) extremum 
with respect to the order parameters of the functional (basically the free energy of the 
compound system): 

The mean-field value of the overlap 

H 
-1nTrexp - S a + l  [ a > m  T .f ( qOpsasp 

The order parameters qap and Qap refer to the H = 0 and H =finite ensembles, 
respectively. Stationarity with respect to the mixed order parameters iap demands 

&p = ( s a s p ) M F  a < m < P  (6) 
where (. . . )MF means average with the weight under the In Tr in (5). It is evident that 
one can always choose Gap = 0, V a  < m < p. For this choice the spins Sa,  a s m, and 
S,, p > m, are not coupled by (5); hence ( S a S p ) M F = ( S a ) M F ( S , ) M ~ ,  a =S m < p, but the 
field acts only on the replicas with /3 > m, so ( S o ) M F  = 0, a =S m, hence ( S , S p ) M F  = 0, 
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a S m < p, and Gap = 0 is a solution of the stationarity conditions (6) indeed. On the 
other hand, iap is nothing but the overlap 4H defined in ( l ) ,  so the statement gH = O  
is trivially recovered. 

We note in passing that near T, (= 1 in the units used here) where one can expand 
(5) in the q and work out f as an explicit functional of the order parameters, one can 
also find another, non-zero, solution for tH. It can be shown, however, that a non-zero 
GH leads to a negative mass gap in the correlation function (3); hence it is unacceptable. 

With the solution imp = 0, a G m < p, the qap and Qnp problems decouple and we 
choose the standard ( H  = 0, respectively H # 0) Parisi solutions for them. 

Now we consider quadratic (free, Gaussian) fluctuations about the mean-field 
stationary point just determined. The procedure by which one goes over from mean 
field to the case of finite-range forces is explained e.g. in the review by Binder and 
Young (1986) and will not be dwelt upon here. The essential point is that the spectrum 
of Gaussian fluctuations is determined by the Hessian M, the matrix of the second 
derivatives of ( 5 )  with respect to the order parameters. Because of =0,  M has a 
block diagonal structure, and the fluctuations in q, 4 and Q decouple. Fluctuations 
about the standard Parisi solutions q, Q have been the subject of detailed investigations 
(De Dominicis and Kondor 1983,1984, Kondor and De Dominicis 1983, Sompolinsky 
and Zippelius 1983, Goltsev 1983, 1984b, Temesviri et a1 1988). Our concern here is 
the study of fluctuations of the fields q*ap about their zero average value. The corre- 
sponding block of the Hessian is given by 

a s m < p  y ~ m < S .  (7 )  
Since S,, S, and S,, Ss are independent, this is equal to 

+ Q,SSny(l - q3s) + qayQps(l - &?,)(1- 43s)l. 

c ? ~ ( P )  =KC ( s , s , ) H ( s , s ~ ) ~  e-lp(r~-rl) 

In the Gaussian approximation the Fourier transform of (3) 
1 

v 

can be expressed in terms of kh as 

(9) 

Now the matrix (8) can be diagonalised relatively easily, so the trace of its resolvent 
can be calculated. The result is 

(11) 
1 + T2 QI dQ 

+ TX(ql) I Q o  ( P 2 + 1  -X(qI)X(Q))’ P 2 + l  -X(ql)X(Ql) 
where 0 and q1 are the minimum and the maximum of Parisi’s order parameter function 
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q ( x )  in zero field; Qo, Q1 have the same meaning in field H, 

is the 'long time' (Sompolinsky 1981), H = 0, susceptibility, with x ( q )  the inverse of 
q ( x ) ,  and x ( Q )  is the same in field H. 

Equation (1 1) displays the full spectrum of fluctuations of the 4 fields 

= - x ( q ) x ( Q )  O s q s q ,  00s Q s  Q1. (13) 
The smallest eigenvalue corresponds to q = 0, Q = Qo. Since x(0)  = 1, x(Qo) < 1 (Som- 
polinsky 1981), we find that min h4,Q> 0, i.e. the correlation function bH(r), equation 
(3), falls of with a finite characteristic length eH = (min A q , Q ) - 1 / 2 .  For small H and 
T =S T,, 1 -x( Qo) = Q: = (3f2)2'3, so tH scales with the field as tH - H-,l3. A tentative 
comparison of this with the prediction of the phenomenological theory (Bray and 
Moore 1987a) gives for the spin-glass stiffness exponent, 0 = ( d  -3)/2, a fairly reason- 
able value. 

The extension of the above calculation to the case of two different fields, HI and 
H,, applied to the two sets of replicas is straightforward, though the diagonalisation 
of the Hessian can now be carried out easily only in the vicinity of T,.  

The overlap 

6 H I , H 2  = ($)HI(S)H2 (14) 

C H , , H 2 ( r )  = (sisj)Hl(szsj)H~ (15) 

is, of course, finite now, but the correlation function 

still decays with a finite characteristic length unless H2 = +HI. For HI = H, H 2 =  
H + AH, AH << H this characteristic length is given by 

H - ~ / ~ ( A H )  - l / 2 .  S H , H + A H  - 
For AH - H the previous result is recovered. 
Now we turn to the overlap between ensembles at two different temperatures T, 

T'.  The relevant 'free-energy' functional is obtained from ( 5 )  by setting H = 0 and 
replacing the common 1/ T 2  factors by 1/ T 2 ,  1/ TT' and 1/ TI2 in the q, 4 and Q terms, 
respectively. The solution GmP = 0, a s m < p, of the stationarity conditions is now 
unique; qmP and Qmp are Parisi matrices corresponding to temperatures T and T'.  The 
Hessian in the 4 sector is given by (8) with T' replaced by TT'. The Fourier transform 
of (4), & A T ( p ) ,  is given by a formula very similar to ( l l ) ,  with the following 
modifications: Qo is set to zero, T in front of the second term is to be replaced by T',  
T 2  in the last term by TT', and x ( q ) ,  x ( Q )  are now the zero field susceptibilities 
corresponding to T and T',  respectively. 

The spectrum is still given by (13), with the new meaning of the x. Since, for H = 0, 
x(0)  = 1 is an identity for all T < T,, we see immediately that the smallest eigenvalue 
is now zero for any T, T ' <  T, .  The overlap of the spin correlations at two different 
temperatures T, T ' <  T, is therefore infinitely long ranged, [ A T  = a3, whatever the 
difference AT = T' - T !  (Note, however, that if, say, T' goes above T, = 1 then x( Q )  = 
1/ T ' <  1, and the spectrum develops a positive gap; there is no long-range overlap 
between the correlation functions in the spin glass and the paramagnet.) 

It is easy to show that for T, T ' <  T, the leading infrared singularity of 6 A T ( p )  is 
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where c( T )  is the slope of q ( x )  at x = 0. The product Tc( T )  varies very little with T 
(it would be a constant if the Parisi-Toulouse (1980) hypothesis were exact). In the 
light of these results the order in the high-dimensional spin glass appears, in a sense, 
to be more robust against temperature changes than might have been expected. 

Equation (1 1) and its T, T' counterpart are closely related to a particular component 
of the Gaussian propagator in the H = 0, T = T' system. This component was first 
calculated by Sompolinsky and Zippelius (1983) by a decoupling procedure in their 
dynamic approach, and later reproduced by Goltsev (1984a) via replicas. In  De 
Dominicis and Kondor (1985) where the complete set of these propagators has been 
calculated, it was called Gyy( p ). Recently a consistent static interpretation of these 
propagators has been given (TemesvAri et a1 1988) and the propagator in question has 
been identified as the Fourier transform of the overlap (SiSj)J"iSj)'' of correlations 
between pure states 1, I' having zero overlap, qlI, = 0, between their local magnetisations. 

With this we can then establish the following relationships: 

lim (SiSj)H,T(SjSj)O,T = lim ( S i S j ) T ( S i S j ) T ,  
H=O T = T '  

These together with 

known from before, demonstrate the sensitivity of the spin glass to infinitesimal changes 
in the external parameters: the slightest change in H or T is enough to reshuffle the 
weights of the pure states, so that the magnetisation overlaps vanish, and of the various 
contributions to the correlation overlaps only those coming from the farthest states 
are left to survive. Given the current picture we have about spin glasses, equation (17) 
might well have been anticipated. What is surprising is the asymmetry we found 
between the finite H, respectively finite AT, cases. A finite H not only reshuffles the 
weights, but also reorganises the correlations ( SiSj ) ,  sufficiently strongly to make their 
projection onto their old self (S,Sj), vanish beyond a finite characteristic distance. In 
contrast to this, the correlations (S iS j )Tp  keep a high degree of coherence with (SiSj) ,  
on any scale. (We note that in a field H,  common to both systems, the overlap 
(SjSj) H,T(SiSj)  H,T,  becomes short ranged again.) 

The persistence of the correlation overlaps under temperature changes brings back, 
admittedly in a strongly modified form, an old idea of Binder's (1977) who proposed 
the projection of the magnetisation pattern ( S i ) T  onto that in the ground state as an 
order parameter. Although by (18) this projection vanishes identically, the long-range 
overlap between (SiSj), and (S ,S j )r ,  suggests that there may exist some underlying 
patterns after all. The projection of their weighted sum onto each other is washed 
away by the rapid change of the weights, as are most of the contributions to the 
projection of their correlations, but the approximate temperature independence of the 
remaining contributions shows that the structure of these patterns, as measured by 
their correlations, changes very little with temperature. 

For T fixed and T' approaching Tc from below the long-range overlap between 
the correlations must eventually disappey. To see how this comes about we have to 
remember that the infrared singularity in GT,v( p ) comes from the region where p << Q, , 
and with TI+ Tc-0, 9 , - ( T , -  T')  this region shrinks to zero. Put differently, for a 
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fixed distance r and TI+ T, -0 we enter the region where r<< 5- ( T,- TI)-' and 
6 T , T , (  r )  starts to drop  quickly. The above results have been obtained in the Gaussian 
approximation around mean-field theory. As such, they have a direct relevance for 
the long-range model which, through its relation to optimisation and to the problem 
of associative memories (see MCzard et al 1987), has acquired a significance of its 
own. In view of the accumulating evidence for the inconsistency of the many-valley 
picture below d = 6  (Temesvdri et al 1988 and  references therein), the relevance of 
our results for the d = 3 short-range spin glass is far less obvious. Nevertheless, by 
looking into the problem of chaos, we found interesting similarities to, and no  less 
interesting differences from, the predictions of the phenomenological theory meant for 
the description of the d = 3 short-range system. I feel the exploration of the overlaps 
and discrepancies between the high-dimensional or long-range and the ( d  = 
3)-dimensional, short-range theories is well worth the effort and  may help to better 
understand them both. 

I benefited from discussions with C De  Dominicis, B Derrida, H J Herrman, D A 
Huse and M MCzard. This work was partially supported by grants from the Hungarian 
Academy of Sciences (AKA) and  from the National Research Fund (OTKA). 
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